Were RNNs All We Needed?

18 ott 2024 · 13 min. 13 sec.
Were RNNs All We Needed?
Descrizione

🔁 Were RNNs All We Needed? The paper "Were RNNs All We Needed?" examines the efficiency of traditional recurrent neural networks (RNNs), specifically LSTMs and GRUs, for long sequences. The...

mostra di più
🔁 Were RNNs All We Needed?

The paper "Were RNNs All We Needed?" examines the efficiency of traditional recurrent neural networks (RNNs), specifically LSTMs and GRUs, for long sequences. The authors demonstrate that by removing hidden state dependencies from their input, forget, and update gates, LSTMs and GRUs can be trained efficiently using the parallel prefix scan algorithm, resulting in significantly faster training times. They introduce simplified versions of these RNNs, called minLSTMs and minGRUs, which use fewer parameters and achieve performance comparable to recent sequence models like Transformers and Mamba. The paper highlights the potential for RNNs to be competitive alternatives to Transformers, particularly for long sequences, and raises the question of whether RNNs were all that was needed for sequence modeling.

📎 Link to paper
mostra meno
Informazioni
Autore Shahriar Shariati
Organizzazione Shahriar Shariati
Sito -
Tag

Sembra che non tu non abbia alcun episodio attivo

Sfoglia il catalogo di Spreaker per scoprire nuovi contenuti

Corrente

Copertina del podcast

Sembra che non ci sia nessun episodio nella tua coda

Sfoglia il catalogo di Spreaker per scoprire nuovi contenuti

Successivo

Copertina dell'episodio Copertina dell'episodio

Che silenzio che c’è...

È tempo di scoprire nuovi episodi!

Scopri
La tua Libreria
Cerca