Quantifying the impact of context on the quality of manual hate speech annotation. Natural Language Engineering
Iscriviti gratuitamente
Ascolta questo episodio e molti altri. Goditi i migliori podcast su Spreaker!
Scarica e ascolta ovunque
Scarica i tuoi episodi preferiti e goditi l'ascolto, ovunque tu sia! Iscriviti o accedi ora per ascoltare offline.
Descrizione
The quality of annotations in manually annotated hate speech datasets is crucial for automatic hate speech detection. This contribution focuses on the positive effects of manually annotating online comments for...
mostra di piùNikola Ljubešić Jožef Stefan Institute, Ljubljana, Slovenia Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
Igor Mozetič Jožef Stefan Institute, Ljubljana, Slovenia
Petra Kralj Novak Jožef Stefan Institute, Ljubljana, Slovenia Central European University, Vienna, Austria
Corresponding author. Nikola Ljubešić E-mail: nikola.ljubesic@ijs.si
This is an Open Access article, distributed under the terms of the Creative Commons Attribution license, which permits unrestricted re use, distribution, and reproduction in any medium, provided the original work is properly cited.
Voice by voicemaker.in
This was produced by Brandon Casturo
Ljubešić, N., Mozetič, I., & Kralj Novak, P. (2022). Quantifying the impact of context on the quality of manual hate speech annotation. Natural Language Engineering, 1-14. doi:10.1017/S1351324922000353
https://www.cambridge.org/core/journals/natural-language-engineering/article/quantifying-the-impact-of-context-on-the-quality-of-manual-hate-speech-annotation/B6E813E528CE094DBE489ABD3A047D8A
Hate speech
Informazioni
Autore | Miranda Casturo |
Organizzazione | Miranda Casturo |
Sito | - |
Tag |
Copyright 2024 - Spreaker Inc. an iHeartMedia Company