Breaking the Memory Barrier

27 ott 2024 · 15 min. 32 sec.
Breaking the Memory Barrier
Descrizione

🧠 Breaking the Memory Barrier: Near Infinite Batch Size Scaling for Contrastive Loss This research paper introduces Inf-CL, a novel approach for contrastive learning that dramatically reduces GPU memory usage...

mostra di più
🧠 Breaking the Memory Barrier: Near Infinite Batch Size Scaling for Contrastive Loss

This research paper introduces Inf-CL, a novel approach for contrastive learning that dramatically reduces GPU memory usage during training, allowing for near-infinite batch sizes. The authors address the issue of quadratic memory growth in traditional methods by implementing a tile-based computation strategy that partitions the contrastive loss calculation into smaller, sequentially computed blocks. To further enhance efficiency, they propose a multi-level tiling strategy that leverages ring-based communication at the GPU level and fused kernels at the CUDA core level, minimizing I/O overhead. The experiments demonstrate that Inf-CL significantly outperforms previous methods, achieving unprecedented batch sizes while maintaining accuracy and comparable training speed. This breakthrough opens new possibilities for large-scale contrastive learning, paving the way for advancements in areas such as self-supervised learning and dense text retrieval.

📎 Link to paper
mostra meno
Informazioni
Autore Shahriar Shariati
Organizzazione Shahriar Shariati
Sito -
Tag

Sembra che non tu non abbia alcun episodio attivo

Sfoglia il catalogo di Spreaker per scoprire nuovi contenuti

Corrente

Copertina del podcast

Sembra che non ci sia nessun episodio nella tua coda

Sfoglia il catalogo di Spreaker per scoprire nuovi contenuti

Successivo

Copertina dell'episodio Copertina dell'episodio

Che silenzio che c’è...

È tempo di scoprire nuovi episodi!

Scopri
La tua Libreria
Cerca